What makes Nissan GT-R so fast – technology explained

Nissan GT-R is the least expensive supercar you can get. The GT-R is a regular street-legal coupe with a V6 engine, yet it can accelerate from 0 to 60 mph in under 3 seconds, something that a very few other sports cars can do. Is there some secret technology? What makes Nissan GT-R so fast?
Nissan GT-R Nissan GT-R.
In a conventional rear-wheel drive sports car, like Chevrolet Camaro, Ford Mustang or Toyota Supra, the engine and transmission are placed in the front, but the engine torque is sent to the rear wheels. This means that no matter how powerful the engine is, the rear wheels will spin on hard acceleration. This happens because there is not enough weight pushing the rear wheels to the road, meaning the rear tires have less grip.

This is what Nissan engineers designing the GT-R took into account. The GT-R is all about the grip. It has an all-wheel drive, meaning the engine power is delivered to all four wheels. The engine is positioned in the front.
Nissan GT-R Engine Nissan GT-R engine.
The transmission, combined with the transfer case and a rear differential in one unit, is placed in the back. This gives the GT-R near perfect weight distribution 53/47 front to rear. What's more important, each wheel is pushed to the road with roughly the same weight. Nissan GT-R all-wheel drive system is a rear-biased all-wheel drive system, meaning the rear wheels are always powered, receiving 50-100% of engine torque depending on the driving conditions. When needed, up to 50% of torque can be sent to the front wheels.
Nissan GT-R AWD system Nissan GT-R ATTESA E-TS AWD system.
Let's look at the power flow in this diagram provided by Nissan: the engine torque is sent to the transaxle unit located at the back through the main carbon-composite propeller shaft (the larger shaft in the middle). The transaxle unit has a built-in transfer case, the device that splits the power between the front and rear axles. Click on the photo to see larger image.

The smaller additional propeller shaft sends the torque from the transfer case to the front differential. The front differential splits the torque between the left and right front wheels. The rear differential is built inside the transaxle unit. The amount of torque sent to the front axle is controlled by the electronic control module using a multi-disc hydraulic clutch installed in the transfer case. The torque split between the front and rear axle varies depending on the road conditions. For example, under heavy acceleration, the torque is split close to 50:50 front to rear, but when coasting on a dry road at a steady speed, almost all power is sent to the rear wheels.
The front differential is an open type, meaning if the left wheel is spinning on the ice, very little torque will be mechanically sent to the right wheel. The rear differential is a multi-disc limited slip differential (LSD) where the slip between the rear wheels is limited. This means, if when taking off, one of the rear wheels is on the ice or snow, it won't spin freely; some amount of torque will be mechanically sent to the opposite rear wheel.

VR38DETT engine

Nissan GT-R has a twin-turbo 3.8L V6 VR38DETT engine. It uses some of the valve train components and basic design of the well-known VQ35 motor that has been used in many Nissan models such as the Altima, Maxima and Pathfinder. In the VQ engine, the cylinders are made of cast iron sleeves pressed into the aluminum block.
Takumi plaque on Nissan GT-R engineTakumi plaque on Nissan GT-R engine.
This is done to make the cylinder walls stronger to withstand up and down piston movement. To make the VR38 lighter, instead of heavy cast iron sleeves, a very thin layer (0.15 mm) of hard metal is applied to the cylinders using the plasma spray process. How the plasma spray process works: the stream of inert gas mixed with the powder of the coating material is heated using an electric arc and sprayed onto the cylinder walls. As the weight distribution is very important, instead of opting for a heavier V8 or V10 engine, Nissan GT-R uses two high-performance IHI turbochargers (one at each side or 'bank') to get more power out of a smaller and lighter V6.
Nissan GT-R turbochargersNissan GT-R turbochargers.
A turbocharger consists of two turbines (exhaust and intake) connected by one shaft; it works by using the energy of the fast exhaust gases exiting the engine to pump more air into the engine intake. When the car is accelerated, the exhaust-side turbine is spun by the exhaust gases, which in turn "spools" up the intake-side turbine. The intake-side turbine creates a boost and pushes the air into the engine under pressure. As the temperature of air entering the engine increases under pressure, two intercoolers are used to keep intake air cool and more dense. Pumping more air into the engine with turbochargers allows more fuel to be injected, which results in more power. The 3.8L V6 VR38 twin-turbo engine in the 2014 Nissan GT-R is rated at 545 horsepower at 6,400 rpm. The VR38DETT has a twin-cam design (each cylinder head has two camshafts), with four valves per cylinder. A variable timing system is used on the intake side; the two bulging round covers in the front of the engine on the lower photo make space for the variable intake timing mechanism installed on the front ends of the intake cams. The intake camshafts are driven by a timing chain that is hidden behind the front engine cover.

6-speed dual clutch automated manual transaxle

Nissan GT-R uses a 6-speed dual-clutch automated manual transmission produced by BorgWarner, which is essentially a manual transmission fully controlled by a computer. The transmission also has a 'Manual' mode, that allows the driver to shift the gears using the paddle shifters mounted on the steering wheel.

To understand how a dual-clutch automated manual transmission works, let's refresh how a regular manual transmission operates: you press the clutch, engage the first gear, then release the clutch; the steps are repeated with every shift. A dual-clutch automated manual transmission has two wet computer-controlled clutches (wet clutch means the friction plates are immersed in transmission fluid). One clutch controls odd gears (1,3,5); the other clutch controls even gears (2,4,6). When the car starts in the first gear, the second gear is already pre-shifted and as soon as the car reaches the speed suitable for the second gear, the odd-gear clutch disengages the first gear and almost simultaneously the even-gear clutch engages the second gear. Similarly, with the next 2-3 gear shift and so on. All this is done to minimize time and torque loss between gear shifting. According to Nissan, it takes only 0.15 seconds to change gears when in "R" mode.

What makes the Nissan GT-R so fast

To sum up, the most prominent technical feature of the Nissan GT-R is what Nissan calls Premium Midship platform with a rear-placed transaxle and a lighter, but very powerful V6 engine in the front. Along with the all-wheel drive system, this creates a nearly perfectly-balanced performance machine with excellent handling and grip so that the driver feels in full control of the vehicle.